Rate of convergence to the semi-circular law

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the rate of convergence to the semi-circular law

Let X = (Xjk) denote a Hermitian random matrix with entries Xjk, which are independent for 1 ≤ j ≤ k. We consider the rate of convergence of the empirical spectral distribution function of the matrix X to the semi-circular law assuming that EXjk = 0, EX 2 jk = 1 and that the distributions of the matrix elements Xjk have a uniform sub exponential decay in the sense that there exists a constant κ...

متن کامل

Complex Hermite Polynomials: from the Semi-circular Law to the Circular Law

We study asymptotics of orthogonal polynomial measures of the form |HN |2dγ where HN are real or complex Hermite polynomials with respect to the Gaussian measure γ. By means of differential equations on Laplace transforms, interpolation between the (real) arcsine law and the (complex) uniform distribution on the circle is emphasized. Suitable averages by an independent uniform law give rise to ...

متن کامل

Rate of Convergence to a Stable Law

We consider the normalized sum of n independent identically distributed random variables Xi; i = 1; : : : ; n with the common probability distribution function F (x) and probability density q(y) = F (y). We suppose that the distribution function Fn(y) of the normalized sum converges as n ! 1 to a stable distribution or stable law. The only stable distributions are the normal distributions and t...

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

On the Rate of Convergence to a Stable Law

We obtain rates of convergence and asymptotic expansions in limit theorems for powers of reciprocals of random variables. Our results improve on recent work of Shapiro [18], who obtained Berry-Esseen bounds of order n~ l/9+c (e > 0). Under weaker conditions than Shapiro imposed we obtain asymptotic expansions whose first term is of order n~ i (logn) 2 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2003

ISSN: 0178-8051,1432-2064

DOI: 10.1007/s00440-003-0285-z